If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2+40t-17t^2=0
a = -17; b = 40; c = +2;
Δ = b2-4ac
Δ = 402-4·(-17)·2
Δ = 1736
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1736}=\sqrt{4*434}=\sqrt{4}*\sqrt{434}=2\sqrt{434}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-2\sqrt{434}}{2*-17}=\frac{-40-2\sqrt{434}}{-34} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+2\sqrt{434}}{2*-17}=\frac{-40+2\sqrt{434}}{-34} $
| 7(6p-2)-8(4p-3)=2 | | 14x+7=25-5x-12+9x | | x+2=11/19+8/9x | | 9=141+a | | 6(x+2)=-5(7+x)-8 | | 0.02=k8 | | 3(x+2)=2(18-x) | | x.5=6 | | x.15=4 | | P5x-14=8x+4 | | 132=48-6x/5 | | 2x^2=164 | | 7m-14=17 | | 9x –32 –6x = 2x + 19 | | 5(4e+2)=100 | | 5(x+7)=5x+35= | | (10x-5)+(9x+5)=180 | | 7x-1=17x+13 | | 7t-5=-3t-15 | | -3x+8=2x–13 | | 0,45x+1,4-0,2×=3,9-× | | -2x+8=x+20 | | x–7=92 | | 10x=5+9x | | -4x+18=46 | | 67=45—i | | -4+4=-x+7 | | 67=45-i | | x–4=9 | | 12-p=8 | | 2x-(x+9)=3(x-2)+9 | | x-13=62-2x |